metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22⋊F5, D10⋊2C4, D5.2D4, D10.6C22, (C2×F5)⋊C2, C5⋊(C22⋊C4), (C2×C10)⋊1C4, C2.7(C2×F5), C10.7(C2×C4), (C22×D5).2C2, SmallGroup(80,34)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22⋊F5
G = < a,b,c,d | a2=b2=c5=d4=1, dad-1=ab=ba, ac=ca, bc=cb, bd=db, dcd-1=c3 >
Character table of C22⋊F5
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 5 | 10A | 10B | 10C | |
size | 1 | 1 | 2 | 5 | 5 | 10 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | -i | i | 1 | -1 | -1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | -i | -i | i | i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | -1 | i | i | -i | -i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | i | -i | 1 | -1 | -1 | 1 | linear of order 4 |
ρ9 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | orthogonal lifted from C2×F5 |
ρ12 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ13 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | √5 | -√5 | 1 | orthogonal faithful |
ρ14 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -√5 | √5 | 1 | orthogonal faithful |
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(2 3 5 4)(7 8 10 9)(11 16)(12 18 15 19)(13 20 14 17)
G:=sub<Sym(20)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17) );
G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(2,3,5,4),(7,8,10,9),(11,16),(12,18,15,19),(13,20,14,17)]])
G:=TransitiveGroup(20,19);
(11 16)(12 17)(13 18)(14 19)(15 20)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 18 6 13)(2 20 10 11)(3 17 9 14)(4 19 8 12)(5 16 7 15)
G:=sub<Sym(20)| (11,16)(12,17)(13,18)(14,19)(15,20), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,18,6,13)(2,20,10,11)(3,17,9,14)(4,19,8,12)(5,16,7,15)>;
G:=Group( (11,16)(12,17)(13,18)(14,19)(15,20), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,18,6,13)(2,20,10,11)(3,17,9,14)(4,19,8,12)(5,16,7,15) );
G=PermutationGroup([[(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,18,6,13),(2,20,10,11),(3,17,9,14),(4,19,8,12),(5,16,7,15)]])
G:=TransitiveGroup(20,22);
C22⋊F5 is a maximal subgroup of
D10.D4 C23⋊F5 D10.C23 D4×F5 D6⋊F5 D10.D6 A4⋊F5 D25.D4 D5.D20 D10⋊F5 D10.D10 C102⋊C4 C102⋊4C4 C22⋊S5
C22⋊F5 is a maximal quotient of
D10.D4 D10⋊C8 Dic5.D4 D10.3Q8 D20⋊C4 D4⋊F5 Q8⋊F5 Q8⋊2F5 C23⋊F5 C23.2F5 C23.F5 D6⋊F5 D10.D6 D25.D4 D5.D20 D10⋊F5 D10.D10 C102⋊C4 C102⋊4C4
Matrix representation of C22⋊F5 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 35 |
0 | 0 | 0 | 0 | 6 | 35 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 6 | 35 | 0 | 0 |
0 | 0 | 40 | 35 | 0 | 0 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,6,0,0,0,0,0,0,40,6,0,0,0,0,35,35],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,6,40,0,0,0,0,35,35,0,0,1,0,0,0,0,0,0,1,0,0] >;
C22⋊F5 in GAP, Magma, Sage, TeX
C_2^2\rtimes F_5
% in TeX
G:=Group("C2^2:F5");
// GroupNames label
G:=SmallGroup(80,34);
// by ID
G=gap.SmallGroup(80,34);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,20,101,804,414]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^5=d^4=1,d*a*d^-1=a*b=b*a,a*c=c*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations
Export
Subgroup lattice of C22⋊F5 in TeX
Character table of C22⋊F5 in TeX